Хранить при 2-8°C

Реагенты для измерения активности амилазы Использовать только для работы «in vitro» в клинической лаборатории

α-AMYLASE-EPS

α-АМИЛАЗА EPS

ПРИНЦИП МЕТОДА

 α -Амилаза катализирует гидролиз 4-нитрофенил-мальтогепатозид-этилидена в меньший олигосахарид, который гидролизуется с помощью α -глюкозидазы, освобождая 4-нитрофенол. Активность α -Амилазы определяется по скорости образования 4-нитрофенола, оптическая плотность которого измеряется при 405 нм^{1,2,3}.

COCTAB

- А. Реагент А: 1 x 32 мл. HEPES 50 ммоль/л, хлорид кальция 0.075 ммоль/л, хлорид магния 13 ммоль/л, α –глюкозидаза > 4 Ед/мл, pH 7.1
- В. Реагент В: 1 x 8 мл. HEPES 50 ммоль/л, 4-нитрофенил-мальтогепатозид-этилиден 18 ммоль/л, pH 7.1

ХРАНЕНИЕ

Хранить при 2-8°C

Реагенты и стандарт стабильны до окончания срока годности, указанного на этикетке, при хранении в плотно закрытом сосуде и предотвращении загрязнения во время использования.

Признаки загрязнения:

- Реагенты: присутствие взвешенных частиц, мутность, абсорбция бланка выше 0.300 при 405 нм (1 см кювета).
- Стандарт: присутствие взвешенных частиц, мутность

ПРИГОТОВЛЕНИЕ РЕАКТИВОВ

Рабочий реагент. Перенести содержимое флакона с Реагентом В в сосуд с реагентом А. Тщательно перемешать.

Если необходимы меньшие объемы, то рабочий реагент приготавливают следующим образом: 4 мл Реагента A + 1 мл Реагента B.

. Стабильность рабочего раствора составляет 20 дней при 2-8°C

НЕОБХОДИМОЕ ОБОРУДОВАНИЕ

- Спектрофотометр или фотометр с термостатируемой измерительной ячейкой на 25, 30 или 37°C с фильтром 405 нм
- Кюветы с длиной оптического пути 1 см

ОБРАЗЦЫ

Сыворотка, плазма, моча

lpha -Амилаза стабильна в сыворотке, плазме или моче в течении 5 дней при 2-8°С. Гепарин и ЭДТА могут быть использованы в качестве антикоагулянта.

ПРОЦЕДУРА

- Нагреть Рабочий Реагент и измерительную ячейку фотометра до температуры реакции.
- 2. Внести в кювету (примечание 2):

, , ,	,			
	Сыворотка/плазма		Моча	
	37°C	30°C	37°C	30°C
Рабочий реагент Образец	1.0 мл 30 мкл	1.0 мл 60 мкл	1.0 мл 15 мкл	1.0 мл 30 мкл

- 3. Перемешать и поместить кювету в измерительную ячейку фотометра. Начать отсчет.
- Через 1 минуту измерить абсорбцию, и далее с интервалом в 1 минуту в течение 3 минут.
- Рассчитать разницу между последовательными измерениями абсорбции, и среднюю оптическую разницу в минуту (Δ А/мин)

РАСЧЕТ

Концентрация а -Амилазы и может быть рассчитана по следующей формуле:

$$\Delta$$
А/мин x $\frac{\text{Vt x } 10^6}{\epsilon \text{ x I x Vs}} = \text{Ед/л}$

Коэффициент молярной абсорбции (ϵ) 4-нитрофенола при 405 нм составляет 10600, оптический путь (I) составляет 1 см, общий реакционный объем (Vt) равен 1.030 при 37°С и 1.060 при 30°С, объем образца (Vs) равен 0.030 при 37°С и 0.060 при 30°С. Для образцов мочи, общий реакционный объем (Vt) равен 1.015 при 37°С и 1.030 при 30°С, объем образца (Vs) равен 0.015 при 37°С и 0.030 при 30°С. 1Ед/л равна 0.0166 мккат/л. Для расчета активности фермента используйте следующие факторы:

		37°C	30°C
	Сыворотка, плазма	х 3239 = Ед/л х 53.58 = мккат/л	х 1667 Ед/л х 27.7 мккат/л
ΔА/мин	Моча	х 6384= Ед\л 105.9 = мккат/л	х 3239 = Ед/л х 53.8 = мккат/л

НОРМАЛЬНЫЕ ЗНАЧЕНИЯ

Томпоротуро роскупици	Сыворотка, плазма		Моча	
Температура реакциии	Ед/л	μкат/л	Ед/л	µкат/л
30°С до¹	25 - 65	0.41 - 1.08	-	-
37°С до⁴	28 - 100	0.47 - 1.67	16 - 491	0.26 - 8.15

Данные величины ориентировочны, каждая лаборатория должна устанавливать свои диапазоны нормальных значений.

КОНТРОЛЬ КАЧЕСТВА

Рекомендуется использовать контрольную биохимическую сыворотку уровня I (код 18005, 18009 и 18042), уровня II (код 18007, 18010 и 18043) и Orina Control de Bioquímica (код 18054) чтобы подтвердить эффективность процедуры измерения.

Для каждой лаборатории должна быть разработана собственная схема контроля качества и процедуры по корректировке, если контрольные материалы выходят за пределы допустимых отклонений.

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Предел обнаружения: 3.0 Ед/л = 0.05 мккат/л.
- Предел линейности: 1300 Ед/л = 21.6 мккат/л для сыворотки и плазмы и 2600 Ед/л = 43.2 мккат/л дл мочи. Для более высоких значений следует развести образец дистиллированной водой в 5 раз и повторить измерение.
- Сходимость (внутри серии):

CV	n
1.3 % 0.6 %	20 20
CV	n
0.7% 0.6%	20 20
	0.6 % CV 0.7%

- Воспроизводимость (между сериями):

Сыворотка и плазма: Средняя концентрация	CV	n
70 Ед/л 666 Ед/л	1.9% 1.7%	25 25
Моча: Средняя концентрация	CV	n
460 Ед/л	0.8%	25
950 Ед/л	1.2%	25

- Чувствительность: 0.309 Δ мА= л/Ед=мин= 18.6 Δ мА= л/нкат =мин.
- Достоверность: Результаты, полученные с данными реагентами не показывали значительных отличий при сравнении с результатами, полученными с другими реагентами. Детали сравнительных экспериментов доступны по требованию.
- Интерференция: Липемия (триглицериды 10 г/л), билирубин (20 мг/дл) не влияют на результаты. Гемоглобин (10 г/л) может влиять на результаты. Некоторые вещества и лекарства могут искажать результат⁵.

Данные метрологические характеристики были получены при использовании анализатора, при использовании другого оборудования или ручных методов результаты могут варьировать.

ДИАГНОСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

 α -Амилаза катализирует гидролиз α -1.4-связей углеводов, состоящих из единиц α -D-глюкозы. Результатом является образование декстранов, мальтозы и нескольких молекул глюкозы. α -Амилаза продуцируется главным образом поджелудочной железой (Р-тип) и слюнными железами (S-тип), но найдена также и в других тканях.

Анализы амилазной активности в сыворотке и моче широко используются в диагностике заболеваний поджелудочной железы, таких как острый и хронический панкреатит. Гиперамилаземия может также быть вызвана почечной недостаточностью, острой абдоминальной болью, опухолями легких и яичников, поражениями слюнных желез, макроамилаземией, диабетическим кетоацидозом, болезнью желчных путей, церебральной травмой, хроническим алкоголизмом и лекарствами (опиатами)^{6,7}.

Клинический диагноз не должен основываться на результатах отдельного теста, он должен согласовываться с результатами клинических и лабораторных данных.

ПРИМЕЧАНИЯ

- Слюна и кожа содержит α-Амилазу. Не насасывайте растворы ртом, нельзя допускать контакта кожи с реагентами.
- Данные реагенты могут использоваться в различных автоматических анализаторах. Инструкции доступны по требованию при запросе.

БИБЛИОГРАФИЯ

- IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C. Part 8. Reference procedure for the measurement of catalytic concentration of α-amylase. Clin Chem Lab Med 2006; 44: 1146-1155.
- IFCC reference procedures for measurement of catalytic concentrations of enzymes: corrigendum, notes and useful advice. Clin Chem Lab Med 2010; 48: 615-621.
- Lorentz K. Routine α-amylase assay using protected 4-nitrophenyl-1,4-α-D-maltoheptaoside and a novel α-glucosidase. Clin Chem 2000;46:644-649.
- Junge W, Werner W, Wilke B et al. Development and evaluation of assays for the determination of total and pancreatic amylase at 37°C according to the principle recommended by the IFCC. Clin Biochem 2001;34:607-615.
- 5. Young DS. Effects of drugs on clinical laboratory tests, 5th ed. AACC Press, 2000.
- Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 4th edition. Burtis CA, Ashwood ER. WB Saunders Co., 2005.
- Friedman and Young. Effects of disease on clinical laboratory tests, 4th ed. AACC Press, 2001.