работы «in vitro» в клинической лаборатории

КРЕАТИНКИНАЗА (СК)

ПРИНЦИП МЕТОДА

Креатинкиназа (СК) катализирует фосфорилирование ADP в присутствии креатинфосфата, образуя ATP и креатина. Активность фермента определяется по скорости образования NADPH, оптическую плотность которого измеряют при 340 нм, в ряде реакций с участием гексокиназы (ГК) и глюкозо-6-фосфат дегидрогеназа (G6P-DH)^{1,2}.

Креатинфосфат + ADP
$$\xrightarrow{CK}$$
 Креатин + ATP \rightarrow ATP + Глюкоза \xrightarrow{HK} ADP + Глюкоза-6-фосфат \rightarrow 6-Фосфотлюконат + NADPH + H \rightarrow

НАБОРЫ

	КОД 11790	КОД 11791
А. Реагент	1 x 40 мл	4 x 40 мл
В. Реагент	1 x 10 мл	4 x 10 мл

COCTAB

- А. Реактив: имидазол 125 ммоль/л, EDTA 2 ммоль/л, ацетат магния 12.5 ммоль/л, D-глюкоза 25 ммоль/л, N-ацетилцистеин 25 ммоль/л, гексокиназа 6000 ед/л, NADP 2.4 ммоль/л, pH 6.7.
- В. Реактив: Фосфат креатина 250 ммоль/л, ADP 15 ммоль/л, AMP 25 ммоль/л, P1,P5-ди(аденозин-5'-) пентафосфат 102 µмоль/л, глюкоза-6-фосфат дегидрогеназа 8000 ед/л.

ХРАНЕНИЕ

Хранить при 2-8°C

Реагенты и стандарт стабильны до окончания срока годности, указанного на этикетке, при хранении в плотно закрытом сосуде и предотвращении загрязнения во время использования.

Признаки загрязнения:

 Реагенты: присутствие взвешенных частиц, мутность, абсорбция бланка выше 0.300 при 340 нм (1 см кювета).

ПРИГОТОВЛЕНИЕ РЕАГЕНТА

Рабочий реагент: Поместите содержимое Реагента В во флакон с реагентом А. Тщательно перемешать. Другие объемы могут быть приготовлены по пропорции: 4 мл Реагента А + 1 мл Реагента В.

Стабильно в течение 15 дней при 2-8°C. Рабочий реагент необходимо предохранять от

НЕОБХОДИМОЕ ОБОРУДОВАНИЕ

- Анализатор, спектрофотометр или фотометр с термостатируемой измерительной ячейкой с температурным режимом 25, 30 или 37°С и с фильтром 340 нм
- Кювета с длиной оптического пути 1 см

ОБРАЗЦЫ

Сыворотка, полученная с помощью стандартных процедур. Креатинкиназа в сыворотке стабильна в течение 7 дней при 2-8°C.

ПРОЦЕДУРА

- 1. Довести Рабочий Реагент и оборудование до температуры реакции
- 2. Налить в кювету (примечание 1):

, , ,	
Образец	50 мкл
Рабочий Реагент	1.0 мл

- 3. Перемешать и немедленно перенести кювету в измерительную ячейку фотометра. Начать отсчет времени.
- Через 3 минуты измерить абсорбцию и затем измерять абсорбцию в течение 3 минут с интервалом в 1 минуту
- 5. Рассчитать разницу между последовательными показателями абсорбции и вычислить среднюю Δ абсорбции за минуту (Δ А/мин).

РАСЧЕТ

M11790r-05

Концентрация СК в образце вычисляется по следующей формуле:

$$\Delta$$
 A/мин x $\frac{Vtx10^6}{\varepsilon xlxVs}$ = Ед/л

Коэффициент молярной абсорбции (є) NADPH при 340 нм составляет 6300, оптический путь (I) составляет 1 см, общий реакционный объем (Vt) равен 1.05, объем образца (Vs) равен 0.05, и 1Ед/л равен 16.67 нкат/л. Для расчета активности фермента используйте следующие факторы:

Δ А/мин	х 3333= Ед/л	
	х 55561 = нКат/л	

НОРМАЛЬНЫЕ ЗНАЧЕНИЯ

Темп. реакции	Мужчины ³		Женщины ³	
	Ед/л	нКат/л	Ед/л	нКат/л
25°C 30°C 37°C	10-65 15-105 38-174	167-1084 250-1750 633-2900	7-55 10-80 26-140	117-917 167-1334 433-2334

Дети имеют более высокие концентрации СК, чем взрослые³. Данные величины ориентировочны, каждая лаборатория должна устанавливать свои диапазоны нормальных значений.

КОНТРОЛЬ КАЧЕСТВА

Для проведения контроля качества теста и процедуры исследования рекомендуется использовать Контрольную сыворотку Уровень I (код 18005, 18009 и 18042) и уровень II (код 18007, 18010 и 18043). Каждая лаборатория должна выработать собственную схему внутреннего контроля качества и процедуры для коррекции действий в случае, если контроль качества не укладывается в приемлемые диапазоны.

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Предел чувствительности: 9.2 Ед/л = 153 нкат/л.
- Предел линейности: 1300 Ед/л = 21671 нкат/л. Для более высоких значений следует развести образец дистиллированной водой в 2 раза и повторить измерение.
- Сходимость (внутри серии):

Средняя концентрация	CV	n
175 Ед/л = 2917 нкат/л	1.8 %	20
567 Ед/л = 9452 нкат/л	0.7 %	20

Воспроизводимость (между сериями):

Средняя концентрация	CV	n
175 Ед/л = 2917 нкат/л	1.3 %	25
567 Ед/л = 9452 нкат/л	1.1 %	25

- Чувствительность: 0.3 Δ мА= л/Ед=мин= 5 Δ мА= л/нкат =мин.
- Достоверность: Результаты, полученные с данными реагентами не показывали значительных отличий при сравнении с результатами, полученными с референсными реагентами. Детали сравнительных экспериментов доступны по требованию.
- Интерференция: Билирубин (<20 мг/дл) и гемоглобин(< 10 г/л) не влияют на результаты. Липемия (триглицериды < 10 г/л) может влиять на результаты. Некоторые вещества и лекарства могут влиять на результат⁴.

Данные метрологические характеристики были получены при использовании анализатора, при использовании другого оборудования или ручных методов результаты могут варьировать.

ДИАГНОСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Креатинкиназа (СК) играет важную роль в мыщцах, обеспечивая превращение ADP в ATP, при сокращении мускулатуры, используя креатин фосфат как резервуар фосформлиоования.

Сывороточная СК вырабатывается главным образом в мышцах и ее концентрация зависит от ряда физиологических характеристик (пол, возраст, мышечная масса, физическая активность, раса).

Концентрация СК в сыворотке значительно увеличена у пациентов с некоторыми заболеваниями скелетной мускулатуры (мышечная дистрофия, миозиты, полимиозиты, элокачественная гипертермия, травма, острый рабдомиолиз), центральной нервной системы (острое цереброваскулярное заболевание, церебральная ишемия, синдром Рейе) и щитовидной железы (гипотироидизм)^{3.5}.

После инфаркта миокарда, подъем активности СК наблюдается через 3-6 часов и достигает своего пика через 24-36 часов. Фермент быстро выводится из плазмы, так что обычно его активность возвращается в норму через 3-4 дня^{3,5}.

Клинический диагноз не должен основываться на результатах отдельного теста, он должен согласовываться с результатами клинических и лабораторных данных.

ПРИМЕЧАНИЯ

 Данные реагенты могут быть использованы в различных автоматических анализаторах. Инструкции доступны по требованию.

БИБЛИОГРАФИЯ

- IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C, Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase. Clin Chem Lab Med 2002;40:635-642.
- IFCC reference procedures for measurement of catalytic concentrations of enzymes: corrigendum, notes and useful advice. Clin Chem Lab Med 2010; 48: 615-621.
- Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 4th ed. Burtis CA, Ashwood ER, Bruns DE. WB Saunders Co, 2005.
- 4. Young DS. Effects of drugs on clinical laboratory tests, 5th ed. AACC Press, 2000.
- Friedman and Young. Effects of disease on clinical laboratory tests, 4th ed. AACC Press, 2001.